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ABSTRACT. There are numerous subexponential algorithms for computing dis- 
crete logarithms over certain classes of finite fields. However, there appears 
to be no published subexponential algorithm for computing discrete logarithn's 
over all finite fields. We present such an algorithm and a heuristic argument 
that there exists a c E 9>0 such that for all sufficiently large prime powers 
pnf, the algorithm computes discrete logarithms over GF(pn) within expected 
time: eC(1og(pn) log og(pn))1/2 

1. INTRODUCTION 

Given a, fi in a finite field, the discrete logarithm problem is to calculate an 
x E Z>0 (if such exists) such that 

ax = fi 
Interest in the discrete logarithm problem stems from the advent of public key 
cryptography, and with it the creation of cryptographic systems, which depend 
for their security on the difficulty of computing such logarithms (e.g., [10, 12]). 
While researchers have been successful in developing subexponential algorithms 
for computing discrete logarithms in finite fields of special form, no subexponen- 
tial algorithm for computing discrete logarithms in all finite fields has emerged. 
We present such an algorithm along with a heuristic argument that there exists 
a c E 91,0 such that for all sufficiently large prime powers pnf, the algorithm 
computes discrete logarithms over GF(pn) within expected time: 

ec(log(pn) log log(pn)) /2 

There exist several algorithms which for all primes p E Z,O compute discrete 
logarithms over GF(p) in time subexponential in p (e.g., [1, 15]). Further, for 
all primes p E Z>0, there exist algorithms which for all n E Z>o compute 
discrete logarithms over GF(pn) in time subexponential in pn (for p = 2, this 
was first shown by Hellman and Reyneri [17] and improved by Coppersmith 
[8]; however, these approaches appear to generalize to an arbitrary prime p). 
Recently, Gordon [16] has announced that for all n E Z>O, there exists an algo- 
rithm which for all primes p E Z,O computes discrete logarithms over GF(pn) 
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in time subexponential in pn (the case n = 2 was previously established by 
ElGamal [13]). The previously most general subexponential algorithm appears 
to be that of Lovom [21], which computes discrete logarithms in GF(pn) for 
log(p) < n098 

Our subexponential method for all finite fields actually consists of two al- 
gorithms. They both may be described as "index calculus" methods [29, 23]. 
The first algorithm is for the case n < p. Here, GF(pn) is represented by 
O/(p), where 0 is a number ring and (p) is the prime ideal generated by p. 
An element of O/(p) is considered "smooth" if and only if, when considered 
as an element of 0, the ideal it generates factors into prime ideals of small 
norm. The second algorithm is for the case n > p. Here, GF(pn) is repre- 
sented by (Z/pZ[x])/(f), where f E Z/pZ[x] is irreducible. An element of 
(Z/pZ[x])/(f) is considered "smooth" if and only if, when considered as an 
element of Z/pZ[x], it factors into irreducible polynomials of small degree. 

While the second algorithm is rather "routine", an overview of the first al- 
gorithm may be useful. Consider computing the discrete logarithm of fi with 
respect to the base a over GF(p) , where p is prime. One can obtain a subexpo- 
nential algorithm by representing GF(p) by Z/pZ and generating random in- 
teger pairs (r, s), calculating y = ar&f modp, and keeping the triple (r, s, y) 
if and only if y is B-smooth for an appropriate choice of B. When sufficiently 
many such good triples (rl, sl, y'), ... , (r,, s,, y,') have been obtained, one 
can use linear algebra modulo p - 1 to calculate al, a2, ..., aE E Z<JP1 such 
that 

z 

i=l 

for some integer 3, and hence that 

(1) a kfl=1 modp, 

where k = EzL airi and 1 = Ez aisi. Generating such k, 1 pairs is tanta- 
mount to calculating the desired discrete logarithm. 

Our first algorithm is a generalization of this approach to GF(pn) . By finding 
a number field of degree n over the rationals such that p is inert, GF(pn) can 
be represented by O/pO, where 0 is the ring of integers in the number field. 
One can then proceed as before by generating random integer pairs (r, s), 
calculating y _ as8fr mod p, and keeping the triple (r, s, y) if and only if y 
is B-smooth for an appropriate choice of B. However, because 0 need not 
be a UFD, the notion of B-smoothness is generalized to mean that the ideal 
generated by y is the product of prime ideals of small norm. Unfortunately, 
there are now two obstacles. First, y will have an adequate chance of being 
B-smooth if and only if its absolute norm is small. We were only able to prove 
that this would be the case when the field in question was a subfield of a small- 
degree cyclotomic field. For this reason, cyclotomic polynomials and Gauss' 
theory of periods arise in the paper. 

The second obstacle results from the linear algebra. We do not obtain Ya,= 
= 3pn 1 for some (algebraic) integer 3 as above. Rather, we obtain 

(Z Iyai)= n-I 
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for some ideal I C 0. An algebraic integer, like H '=1 Y', which generates an 
ideal which is the (pn - 1)st power of an ideal is called a (pn - 1)-singular 
integer. 

One can define two (pn - 1)-singular integers to be equivalent if and only if 
their ratio is the (pn - 1)st power of an element of the field. The equivalence 
classes form an Abelian group. The identity of this group is the class containing 
the (pn - 1)st powers of algebraic integers. This group is generated by a small 
number h of elements (h depends on the structure of the ideal class group and 
the rank of the unit group in 0) . From this, the main virtue of singular integers 
follows: if h of them can be obtained, then there will exist a linear combination 
which is the (pn - 1)st power of an algebraic integer. Thus, in the algorithm we 
will collect a number h of (pn - 1)-singular integers Y'I, Y2, ... Yh, as above, 
and then find bI, b2, ..., bh E Z<pn -' such that 

h 
H b, = 5pn1 fi Yi 

i=1 

for some algebraic integer 3 E 0. From this, k and 1 as in equation (1) can 
be obtained in a straightforward way. 

There remains the problem of calculating the bl, b2,... , bh described above. 
This is done with the device of "character signatures", which were introduced 
in the context of integer factoring [2]. The character signatures occurring in 
integer factoring are simpler than those occurring here, and a review of that 
setting may be rewarding. 

2. PRELIMINARIES 

In this section some basic facts are presented. 

Singular integers and character signatures. Here, some notions presented in [2] 
in the context of integer factoring are generalized. 

Definition. For all number fields K with ring of integers 0, for all s E Z>o, 
and for all a E 0, a is an s-singular integer (with respect to 0) if and only 
if there exists an ideal I C 0 such that (a) = Is . 

Let K be a number field with ring of integers 0, unit group E, and ideal 
class group C. Let s E Z>0, and let a, T be s-singular integers. Define a l T 
if and only if there exists a , fi E 0 such that a8 a = fl5T. Then is an 
equivalence relation on s-singular integers, and the set of equivalence classes 
forms a group G(s) of exponents dividing s, with identity I(s) = {ca8I a E O} 
under the operation [a][,f] ~-+ [afi]. There is a homomorphism V/ from G(s) 
onto the group C(s) = {clc E C & c= [(1)}, [a] [I], where (a) = Is. 

The kernel of V/ is Ker(yV) = {[u]u E E}, and consequently Ker(yV) - 
E/Es. Hence, 

(*) G(s) E F/Es f C(s). 

Definition. For all number fields K with ring of integers 0, for all s E Z>,0 
for all prime ideals P1, P2, ..., P, c 0, for all 11 ,12, ..., lz E 0, and for 
all a E O: if for i = 1, 2,.. ., z, (a) + Pi = (1), sl(N(Pi) - 1), and 1i + Pi 
is a primitive sth root of unity in 0/Pj*, then the s-character signature of a 
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with respect to (P1 , 1i), (P2, 12), ... , (PZ, i1) is (e I, e2, ..., es), where for 
i-=1,2,.. z, O(N(P1)-l)/s =/,ei mod Pi and ei E Z>o 

Now assume that K is Abelian over Q; then it follows from the Cebotarev 
density theorem that for all s E Z>o, for all prime ideals PI, P2, ... , P, c 0, 
and for all c E G(s), there exists a a E 0 such that (a] = c, and for 
i = 1, 2, ..., z, (a) + Pi = (1). For (P1, 11), (P2, 12), ... (Pz,l z) as 
above, let the map 0 take c to the s-character signature of a with respect 
to (P1, 11), (P2, 12), ..., (Pz, lz). The map 0 is well defined on G(s) and is 
a group homomorphism into 3iz I Zs. 

Dependencies in Abelian groups. It is well documented how to find dependen- 
cies among elements of a vector space over a finite field. However, in Algorithms 
I and II, and many other factoring and discrete logarithm algorithms, it is nec- 
essary to find dependencies in modules over Z/mZ, where m is not prime. 
While in many papers this issue is taken for granted, we have included some of 
the relevant facts here. Readers may prefer to skip this exposition. 

Theorem. Let p E Z>O be prime, and let G = (Dn > Gj, wherefor j = 1, 2, ..., 
n, Gj is cyclic of pth power order. Let h1, h2, ..., hn+l E G. There exist 
al, a2, ... ) an+1 E Z such that GCD(al, a2, ..., an+l) = 1 and Ein+ hiai= 
0. 

Proof. For n = 1 ,let g be a generator for G,and let hI = xIg and h2 = x2g. 
Then without loss of generality there exist b1, b2 E Z and f E Z>o such that 
(bi,p) = 1, xi = pf b, and X2 = pfb2. Let c E Z be such that cb, _ 
1 mod pe, where pe is the order of G, and let a, = -cb2; then a, hi + h2 = 0. 

For n > 1, let gj be a generator for Gj for j = 1, 2, ..., n. For i= 
1, 2,..., n + 1, let 

n 

hi 
= 

Eei,jgj. 
j=l 

Let pfIIGCD(el, 1, e2, , ...en+l, 1); then without loss of generality it can 
be assumed that el,1 = pfa, where (a, p) = 1. Consequently, for i = 

2, 3, ..., n + 1, there exist bi E Z such that 
n 

ihli=hi -bihi E (Gj. 
j=2 

By induction, there exist a2, a3, .5. , an+l E Z such that GCD(a2, a3, ... , an+l)= 

1 and ni+' aih' = 0. Let a, = -Z7 aibi; then a1, a2, ... ., an+1 are as 
desired. 0 

Corollary. Let n, s E Z>O, and let G be a finite Abelian group of exponent 
dividing s such that G = fn Gi, where for i = 1, 2, ..., n, Gi is cyclic. 
Let hi, h2 ... hn+1 E G. There exist al, a2, ..., an+l E ZfO such that 

GCD(al, a2, ... , an+l) = 1 and En+' aihi = 0. 
Proof. We have G = ffGp , where Gp denotes the p-Sylow subgroup of G 
and the product is over all rational primes p. Applying the theorem for each 
Gp : {0} and using the Chinese Remainder Theorem yields b1, b2, * , bn+l E 

Z>O such that GCD(bl, b2, ..., bn+l, s) = 1 and En+'1bih1 = 0. For i = 
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1, 2,... ,n+1 ,let ci bimods and ci E Z,'O. Let d = GCD(c1, c2, .. ,cn+l). 
For i= 1, 2, ...,n + 1, let ai = ci/d. The al, a2, ...,an+l are as de- 
sired. 0 

Subfields of cyclotomic fields. Let q E Z>O be prime, and let nlq - 1; then 
there exists a unique field Kq,n C Q(Cq), the qth cyclotomic field, such that 
[Kq, n Q] = n . The following are well known [ 1 1]: 

1. The ring of integers of Kq,n is Oq,n = Z[nlo, n I 5 nn -1J where for 
i0=, 1, .. ., n1, - ji = q, n, =Eqa, the sum being taken over the 
set of a E ZIJ-> such that ind(a) i mod n, where ind(a) denotes 
the index of a in Z/qZ* with respect to a fixed generator. 

2. Kq,n = Q(no) (however, there exist q, n such that Oq,n :? Z[no ]) . 
3. The minimum polynomial for no over Q is f = fq, n=flf-ol(x- 
4. If p E Z>O is prime and p is inert in Kq,n, then Oq, n/(P) is a finite 

field with pn elements and 
fn-I 

R =Rq,n,p = >01a zg =~1..nl R = RqXXp = 4 ainilai E Z":<O, i = O, I,.. n - I} 
i=o 

is a complete set of representatives. 
Arithmetic in Kq,n may be done as follows (our description is essentially 

that of Edwards [11], which in turn is derived from Kummer). 
Elements in Oq, n will be represented in terms of the integer basis no , ... 

t1n-I - 
First, for i, j, k E Z,1n-1 calculate Ci, j,k E Z such that 

n-I 
=i jZCi,j,knk, 

k=O 

then multiplication in Oq ,n is straightforward. 
Prime ideals of Oq, n will be represented as follows. Let s $ q be a rational 

prime, and let f be the order of s in Z/qZ* . Let e = (q - 1)/f; then the 
splitting field of s is Kq, e . Let g = (e, n); then s splits into g distinct prime 
ideals of residue class degree n/g in Oq,n 

Let h E Z/sZ[x] be an irreducible factor of fq,q 1 = Xq-l +. .. +x+ 1 (the 
qth cyclotomic polynomial), and let a be a generator for GAL(Q(Cq)/Q) (the 
construction which follows produced the correct outcome for all choices). 

For i= 1, 2, .. ., g, let Si C Oq, q-1 be the prime ideal generated by s and 
(h(Cq))', and let Si = si n Oq,n . Then (s) - fJ= Si is the prime decomposi- 
tion of s in Oq, n 

For i = 1, 2, ...,g and j = O,, ..., e - 1, calculate uj,j E Z< such 
that 

Ui,j_ nq,e,j mod Si 
(such u1,j always exist [11]). Let U = {us, 1j = 0, 1, ..., e - 1} (U is the 
set of roots of fq, e mod s and is independent of i) . Let 

e-1 

v'=n J (u-ni,j) 
j=O uEU, u#Xu,3i 
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For i = 1, 2, ... , g, (s, i) will represent the prime ideal Si of Oq,, lying 
above s. 

Let a CE Oq, n, and let a E Z>0 . Then 

SIf(o) iff SiOq,qI a0q,q1l if Sif kOq,q-i lif PaIya. 

The penultimate statement follows from Galois theory by noting that a E Kq, n 
The last statement is essentially the first proposition of ?4.10 in [11]. Hence, 
there is a computationally efficient method for determining the power of Si 
which divides (a). 

Next, consider singular integers and character signatures in Kq,n. Let s e 
Z>o. By Dirichlet's unit theorem, EIEs can be written as the direct sum 
of at most n cyclic groups. Observing that the class number of Kq,n is 
less than or equal to the class number of Q(Cq) [27, Theorem 10.1], which 
is less than or equal to qq3 [22], it follows that C(s) can be written as the 
direct sum of at most q 31og2(q) cyclic groups. By (*) above, G(s) can 
be written as the direct sum of at most n + q3 log2(q) cyclic groups. Let 
H = n + q3 log2(q) + 1 . By the preceding corollary, if a1, a2, ... , cH are s- 
singular integers, then there exist 3 E Oq, n and b1, b2, ... , bH E Z,0 such that 

GCD(b1, b2, ..., bH) = 1 and H7J= I1i = 3S . Further, if 61 = 6(aI), 02 = 

0(a2), ... , = O(aH) are the s-signatures of a1, a2, ..., aH with respect 
to some (P1, 11), (P2, 12), ..., (P_, l_), then EH71 bj16 = 0. Finally, given 
the prime factorization of s, and given the s-signatures 01, 02,..., OH, the 
proofs of the preceding theorem and corollary give an algorithm to calculate 
a sequence of bj 's such that EH I bjO6 = 0. This algorithm requires time at 
most O(H2 z log3 (s)) . 

Smooth numbers [7]. For all y E 91< and 3 E 91>0, Lx[y, 3] denotes the set 
of functions from 9l to 9l of the form 

e('5+o(1))(1og(x))Y(1og1og(x))'-y X o 0. 

It will be helpful in the running time analyses which follow to note that for all 
y E 91 0 6 E 91>0 , L E Lx[y, 3], and c E Z>O: 

(log(x)) )L (E Lx [Y y ] 

For all a, y E 9>0 with a < y, for all /,3 E 90, Lo E Lx[y, 3], and 
L1 E Lx[a, /3], there exists an L2 E Lx[y - a, (y - a)3//3] such that for all 
N E 90, the probability that a positive integer less than or equal to Lo(N) is 
L1 (N)-smooth (i.e., has all positive prime divisors less than or equal to LI (N)) 
is at least 1/L2(N). 

Smooth polynomials. Algorithm II depends on finding polynomials over finite 
prime fields whose irreducible factors all have small degree. Call a polynomial 
m-smooth if and only if all of its irreducible factors have degree less than or 
equal to m. The following theorem gives a bound on the probability that a 
polynomial of degree n will be m-smooth. Our bound is not the best possible 
but is adequate for our purposes. 

The following notation is generalized from Odlyzko [23]. 
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Definition. For all p, n, m E Z>O with p prime, let 

Np(n, m) = #{f f eE Z/pZ[x] & degree f = n & f m-smooth}. 

Definition. For all p, n, m E Z>O with p prime, let 

Pp(n, m) = Np(n, m)/Np(n, n). 

Theorem. For all p, n, m e Z>O with p prime and n > m, we have Pp(n, m) 
> l/(pnnl/m). 

Proof. For all k E Z>O, let Sk = {flf e ZlpZ[x] & degree f = k & f monic 
and irreducible}, and let Sk = #Sk ; then (pk - pk/2 log(k))/k < Sk < pk/k [25]. 
For all k E Z>O, let Tk = {flf E ZlpZ[x] & degree f < k & f monic and 
irreducible}, and let tk = #Tk; then 

k k 

tk = ESi > E(pi -pil2log(i))/k 

k-i 

= pk/k + Z(pi - p(i+l)/2 log(i + 1))/k > pk/k, 
i=l 

since pi > p(i+/1)2log(i + 1) for i = 1,2, ... , k - 1 . Let r be the greatest 
integer less than n/rm. Let U = {If(3fi, f2, ..-, fr E Tm)[f = Hi=1 f]}, and 
let u = #U. For all f E U, we have f E Np(n, m), thus u < Np(n,rm). 
From probability (and the fact that Z/pZ[x] is a UFD): 

U (tm+r- 1) ((pm/m)+r- 1) 

- ((p/rm) + r - 1)!/((p/rm) - 1)!r! > (p/rmr)r. 

Since r > ((n + 1)/m) - 1, pmr > pn+l/pm, and since mr < n, there holds 
(mr)r < nnl/. Hence, (p/rmr)r > pn+l/(pmnnl/). Finally, since Np(n, n)= 
pn+l, we have Pp(n, m) = Np(n, m)/Np(n, n) > 1/(pmnfnlm). 5 

Existence of a solution. It is possible that for a, ,B E GF(pn) with ,B $ 0, 
the equation ax = ,B will have no solution. However, for simplicity in the 
algorithms below, it will be assumed that a is a generator for GF(pn)* and 
thus that a solution always exists. In the general case on inputs a, ,B E GF(pn), 
one may choose elements of GF(pn) at random until a generator y is found 
and confirmed. Then use the algorithms below to calculate xI , X2 E Z<pn-1 >0 
such that yxi = a and yX2 = ,B. The original problem can now be solved as 
follows: calculate g1 = (xI , pn - 1); if g1 does not divide X2, then there is no 
solution, else x 1(x2/gl) modpn - 1 , where / (xl/g )-l mod((pn - 1)/gl). 
Since generators for GF(pn)* are abundant [3, Lemma 4], finding one will 
require negligible time. Further, a candidate generator y can be confirmed by 
first factoring pn - 1 and establishing that for all primes tIpn - 1 , y(Pn-l)/t , 1 . 
Using an " L[1/2, 1] " factoring method (e.g., [19]), this process will add only 
negligible time to the algorithms below. 
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Notation. For all p, n E Z,o with p prime, if we write f E Z/pZ[x], then it 
will be assumed that f = E% aix , where for i = 1, 2, ..., n, ai E Z>OP . 

3. ALGORITHM I 

This algorithm will be used for discrete logarithms over GF(pn) when p > n . 
Let p E Z>O be prime and fi E Z/pZ[x] irreducible, monic of degree 

n. Then (Z/pZ[x])/(fi) is a finite field with pn elements. Let a, , fl E 
Z/pZ[x] of degree less than n such that [al] generates (Z/pZ[x])/(fi)* and 
Ihl g O mod f1. Hence, there exists an x such that O < x < p-n -1 and 
ax-3I mod fi . Assume that p, fA, al, ,Il are given and x is sought. Then 
one may proceed as follows. 

As remarked in the introduction, it is necessary that we work in an nth- 
degree extension of the rationals which is contained in a cyclotomic field of 
small degree. For this reason, the original polynomial fi will be replaced with 
a new irreducible monic polynomial f such that Q[x]/(f) is a field of the 
desired type. 

Using the construction in [4], find an f E Z/pZ[x] irreducible of degree n 
in random time polynomial in log(p) and n (assuming ERH). By the con- 
struction in [4] (also see [6]), there exists a e E Z>o such that f = fq, n 
for some prime q e Z>o with q < en4(log(np))2 (assuming ERH). We have 
(Z/pZ[x])/(f) (Z/pZ[x])/(fi). Using [18], calculate a2 and 32 E Z/PZ[X] 
of degree less than n such that [a21 is the image of [aI] and [321 is the image 
of [fll] under this isomorphism. Hence, our original problem is reduced to 
the problem: given p, f, (a2, P2 with [a2] generating (Z/pZ[x])/(f)* and 
l2 0 0 mod f, calculate x such that O < x < pn 1 and ax 32 mod f . 

Since f is irreducible in Z/pZ[xJ, it follows that p is inert in Kq, n . There 
exists the following isomorphism from (Z/pZ[x])/(f) to Oq,n/(P) 

[E gixi] 1: gi (E di, jnq,n, j) 
i=O i=O j=O _ 

where for i = 0, 1, ..., n - 1, n = En-, di,jiq, n,j, with d,j E Z. 
Calculate a3, /3 E 0 such that [a3] is the image of [a2] and [31] is the 

image of [fl21 under this isomorphism. By reducing coefficients modulo p, 
find a, /) E Rq,n,p such that a a3 mod p and /B /33 mod p . Hence, the 
original problem becomes that of calculating x such that 0 < x < pn - 1 and 
ax= f mod p. 

Below, a family of algorithms {Ay}yez>o is presented. It will be argued that 
for sufficiently large y: Ay on all inputs q, n, p, a, fi such that p, q E Z>o 
are prime, n < p, nlq- 1, q < an4(log(np))2, p inert in Kq,n, and a, fl E 
Rq, n ,p with [a] generating Oq, n/(p)* and fi $ 0 mod p, outputs x such that 
O<x<pn-1 and Xaxflmodp. 

Let Lo E Lx[ 1/2, 1/2]. 

Algorithm AyI 
Stage 0. Input q, n, p, a, fl. 
Stage 1. Set N = pyn. Set (the "smoothness bound") B = Lo(N). Set 

H= n +q310g2(q) + 1. 
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Stage 2. Calculate T = {III is a prime ideal of 0, q ? I, and I lies over 
a rational prime < B} . Let w = #T, and let (Ii, '2, ..., II) be an ordering 
of T. 

Stage 3. Set j = 1. While j H: 
Stage 3(a). Set z = 1. While z < w + 1: Choose random r, s with 

O < r, s < pn - 1 and calculate y E Rq,n,p such that y = ar/Is mod(p). If 

(Y) = flw IIei (i.e., if the ideal generated by y is B-smooth), then set 

yj1,z=y, rj,z=r, sj,z=s, vj, z=(el,e2, ...,ew), and z=z+1. 

Stage 3(b). Calculate a,, a2, ...a +l E Z<-l such that GCD(al, a2, 

aw+0 = 1 and Zw=l'aivj,i = (,O, ..., O) mod pn - 1. Calculate aj = 

W+1 yaij.. Set j =j+ 1. 

Stage 4. For j = 1, 2, ... , H, calculate Oj the (pn -l)-signature of aj with 
respect to (Si, ml), (S2, M2), ... , (S2H, m2H), where for j = 1, 2, ..., H, 
k = 1, 2, ..., 2H, Sk C Oq,n is a prime ideal such that (j) +Sk = (1), 

(p - l)IN(Sk) - 1, and Mk is a primitive (pn - l)th root of unity in 0/Sk . 

Stage 5. Calculate bI, b2, ..., bHe Zpn-1 such that GCD(bl, b2,..., bH) 

I and EJH I bjfWj =_ (O, O, .., ) mod(pn -1) . 

Stage 6. Calculate k = EH ZiIt' (rj, iaibj) and I = EZHL Ew+'j'(sj, iaibj) . 

If akg/l 0 1 mod(p), then go to Stage 3. 
Stage 7. If (1, pn - 1) #A 1, then go to Stage 3, else calculate and output 

x -k/l modpn -1 and halt. 

4. ANALYSIS OF ALGORITHM I 

In this section computational details of Algorithm I will be described and 
there will be an analysis of the expected number of steps required by the algo- 
rithm on all inputs q, n, p, a, / such that p, q E ZO are prime with n < p, 

niq - 1, q < cn4(1og(np))2, p inert in Kq,n, and a, /l e Rq,n,p with [a] 
generating Oq, n/(p)* and /I 0 0 mod p . For convenience, the argument will 
be for pn sufficiently large. 

To begin, consider the expected number of steps required by a single pass 
through each of the stages of the algorithm. 

The time required for Stages 0, 1, 6, and 7 are dominated by the time required 
by other stages. 

Stage 2: Test all numbers less than or equal to B for primality. For each 
prime s $ q found, calculate the representatives (s, y,) of the prime ideals of 

Oq, n lying above s and add them to T (see ?2). 
Using random polynomial-time primality testing [26, 3] and random polyno- 

mial-time finite field polynomial factorization [5], and observing that because 
of the size constraints on q, orders can be computed naively, it follows that 
there exists an L1 E L,[1/2, V~7i] such that the expected number of steps for 
a pass through Stage 2 is at most L1 (N) . 

Further, since each rational prime has at most n primes lying over it in Oq, n 
it follows that there exists an L2 e L,[1/2, 1/2] such that w = #T < L2(N). 

Stage 3(a): A y will be tested for B-smoothness by the following method: 
First the norm of y will be calculated and tested for B-smoothness. Those y 
which have B-smooth norms will then be factored as ideals (see ?2). 
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A bound on the norm of y will be needed, 
n-I 

Y = E gi1i, 
i=O 

where 0<gi <p- 1 for i=0, 1, ..., n- 1. Hence, y isthesumof q- 1 
terms each of the form g C, where 0 < g < p - 1 and c E Z<q . This is also 
the form of the n conjugates of y2. Hence, the norm of Y = HfEGa1(Kq,,/Q) Y2 
is the sum of (q - 1)n terms, the largest of which has absolute value pnf. By 
the constraints on q and n, it follows that there exists a yo E Z>o such that 
N(y) < pyon < N for all algorithms Ay, with y > yo. Henceforth, assume that 
Y > Yo- 

Under the usual assumption [20] that the probability that N(y) is B-smooth 
(the exception of the prime q is inconsequential) is equal to the probability 
that a random positive integer less than N is B-smooth (see ?2), there exists 
an L3 E LX[1/2, N/1/2] such that the probability that y is B-smooth (i.e., 
that all prime ideals dividing (y) have norm less than or equal to B) is at 
least 1 /L3 (N) . Since w B-smooth y 's are needed, it follows that there exists 
an L4 E L,[1/2, v52] such that the expected number of y's which must be 
generated and tested for B-smoothness is at most L4(N). 

The norm of each y may be tested for B-smoothness naively. Hence, there 
exists an L5 E L,[1/2, 3/VXs] such that the expected number of steps required 
for a single pass through Stage 3(a) will be at most L5(N). 

Stage 3(b): As indicated in ?2, there must exist a1, a2, a.w, a c+ eZ<n >0 

such that GCD(al, a2, ...,aw+) = 1 and Ew=l aivj,i- (0, 0,..., 0) 

mod(pn - 1). Further, as indicated in ?2, there exists an algorithm which 
will find a1, a2, ... , aw+ in O(w3 log2(pn)) steps. Hence, there exists an 
L6 E L,[ 1/2, 3/XV] such that the expected time for a single pass through Stage 
3(b) is at most L6(N). 

Stage 4: Check numbers of the form 1 +a(q(pn -1)) until primes s1, s2, . .. 

S2H/n are found. For k = 1, 2, ..., 2H/n, let gk e Zf<k generate Z/SkZ* 
andlet geZ<q generate Z/qZ*. For k= 1,2,...,2H/n, 1=1,2,... ,n: 
Let Sk, C q, q- 1 be the prime ideal generated by s and dI - Ck, where 
Ck -ga(P -1) mod s and d, =- gt mod q. Let Sk,l = 5k,l n Oq,n Then 
Sk, 1, Sk,2, ... , Sk,,n are the (distinct, residue class degree 1) prime ideals of 
Oq, n lying above Sk . Since Sk =1 mod q(pn - 1 ), it follows that 
(pn - 1)I(N(Sk, 1) - 1) and N(Sk, ) > B. Since for j = 1, 2, ... , H, (aj) 
is B-smooth, it follows that (cj) + Sk I = (1) . Let mk = gka mod Sk. Then 
the 2H pairs (Sk l, nMk) will be as required for Stage 4. 

Assume that approximately the "expected" number of primes will be found 
in an arithmetic progression: assume that for all mn, b e Z>O, with b > 
m log(m)3: #{aI 1 +am < b & 1 +am prime} > b/m log(b)2. If we let v = 2H/n 
and m = q(pn - 1), then all of the v primes needed above can be found 
by checking less than v log(v)3 log(m)3 a's, and each prime s found will 
be less than mv log(v)3 log(m)3. The constraints on n and q imply that 
there exists a cl, c2 E Z>0 such that v log(v)3 log(m)3 < (n log(p))cI and 
mv log(v)3 log(m)3 < pn(n log(p))c2 . Hence, the required primes can be found 
and tested for primality [3, 26] in a negligible number of steps. 
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Generators for Z/skZ* are abundant [3, Lemma 4]. Checking a candidate 
g to determine whether it is a generator will be done by factoring s - 1 and 
testing that for all primes tls - 1, g(s-l)/t # 1 mod s. The factorization can be 
done using an "L[1/2, 1]" factoring method (e.g., [19]). A similar argument 
shows that a generator for Z/qZ* can be found in a negligible number of steps. 

We have Oq,nI/Sk,l Z/SkZ, where the isomorphism is induced by C' F 

Ck. Hence, the calculations of the (pn - 1)-signatures of the aj 's is a set of 
discrete logarithm problems over Z/SkZ. Using the bounds on 2H and the 
primes s together with an " L[ 1/2, 1] " discrete logarithm algorithm for finite 
prime fields (e.g., [24]), we conclude that there exists an L7 e L,[1/2, 1] such 
that the expected number of steps required for a single pass through Stage 4 is 
at most L7(N). 

Stage 5: By the analysis in ?2, the required b1, b2, ..., bf exist and can be 
found in time O(H3 log3(pn - 1)). Using the bounds on q, we conclude that 
the number of steps required for a single pass through Stage 5 is negligible. 

It will next be shown that the expected number of passes through stages of 
the algorithm is negligible. Stages will be repeated only if required in Stage 6 
or Stage 7. 

Stage 6 will cause stages of the algorithm to be repeated only if ak /i l 
1 mod (p). One has 

k g ari iaibn si iaib T I Ti(ar1 asj 1)a, -I T(TT , ja bi 

i,j j i j i j 

By construction, the aj are (pn- 1)-singular integers. By the arguments 
in ?2 there exists a 3 E Oq,n and b1, b2, ..., E Z< "p such that >0 

GCD(b1, b2,..., bH) = 1 and jHj Cb = - Pn'1 Further, G(pn - 1) is a 
group of indices dividing pn - 1 , which is the direct product of at most H - 1 
cyclic groups (see ?2). The signature homomorphism 0 maps G(pn - 1) into 
a group which is the direct product of 2H cyclic groups of order pn - 1 . It 
is reasonable to assume that this map is an embedding, and hence that these 
bi, b2, ..., bH are the ones found in Stage 5. It follows that 

akfl1 = flabj =jp 1. 
a 

Stage 7 will cause stages of the algorithm to be repeated only if (1, pn - 1) I 1 
However, (1, pn - 1) = 1 with probability q(pn - 1 )/(pn - 1) > 1/c logpn, where 
C E 9%>0 is independent of p and n [3, Lemma 4]. Briefly, this can be argued as 
follows: Since from Stage 3(b), GCD(al, a2, ... , aw+?) = 1, and from Stage 
5, GCD(bI, b2, ... , bH) = 1, it follows that for all primes t dividing pfn - 1, 
there exist i e Z<w+l and j E Z<H such that aibj is relatively prime to t. 
Consider yj, i =_ acJij P , and observe that for all s E Zpn-1, there exists a 
unique r E Z<pn1 such that yji =, arfls. Hence, sj,i is "random" mod t 
and consequently I = Z IL1 ZwIi1 (sj, iaibj) is also "random" mod t. 

Recalling that in Algorithm Ay we have N = pyn, we may conclude that 
there exists a c1 E 91>0 and an LI E L,[1/2, c1] such that for all suffi- 
ciently large y, the expected number of steps required by Algorithm Ay on 
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all inputs q, n, p, a, ,B such that p, q E Z>O are prime, n < p, nlq - 1, 
q < en4(log(np))2 , p inert in Kq,n, and a, fi e Rq,n,p with [a] generating 
Qq,n/(p)* and I - 0 mod p is Lj(pn). Hence, there exists a c1 e ,0 such 
that the expected number of steps required by Algorithm I (when n < p) is 

ec(log(pn) log log(pn)) 1/2 

Finally, it is clear from Stages 6 and 7 that the output of the algorithm is x 
such that ax- =i mod p . 

5. ALGORITHM II 

This algorithm will be used for discrete logarithms over GF(pn) when p < n . 
Algorithm II is a generalization of the algorithm for GF(2n) by Hellman and 

Reyneri discussed in Coppersmith [ 17, 8]. 
It is assumed that the inputs to the algorithm are p, f, a, fi such that p E 

Z>0 is prime, f E Z/pZ[x] is monic, irreducible of degree n > p, and a, ,6 e 
Z/pZ[x] of degree less than n with [a] E (Z/pZ[x])/(f) a generator of the 
multiplicative group and ,B - 0 mod f . 

Algorithm II. 
Stage 0. Input f, p, a,/. 
Stage 1. Set n = degree of f, m = [(nlog(n)/log(p))1/21. 
Stage 2. Calculate T = {filfi E Z/pZ[x], deg(fi) < m, fi irreducible and 

monic}. Let w = #T and let (fi, f2, ... , fw) be an ordering of T. 
Stage 3. Set z = 1. While z < w + 1: Choose random r, s with 0 < 

r, s < pn - 1 and calculate y E Z/pZ[x] of degree less than n such that 
y-= rfis mod f . If y = Y ti=1 fiei, where y is the leading coefficient of y (i.e., 
if y is m-smooth), then set yz = y, r r = = =s, vz = (el, e2, ..., ew), 
and z=z+l. 

Stage 4. Calculate a1, a2, .. ., aw+l E ZO <n1 such that GCD(aI, a2, ... , aw+ ) 
>0 

= 1 and EW 
+ aivi =-(O, O, ...,O) mod(pn -1). 

Stage 5. Calculate k = Ew+i(riai) and l= EiW=+(siai). Calculate s E Z<P 
such that s -okfl1 mod f . 

Stage 6. Calculate Y E Z>P such that ( = s mod f. 
Stage 7. If (1, pn - 1) $ 1, then go to Stage 3, else calculate and output 

x--(y((pn - 1)/(p - 1)) - k)/l mod pn - 1 and halt. 

6. ANALYSIS OF ALGORITHM II 

In this section the complexity of Algorithm II will be analyzed. For conve- 
nience it will be assumed that pn is sufficiently large. 

The time required for Stages 0, 1, 5, and 7 is dominated by the time required 
by other stages. Since n > p, it follows that the y required in Stage 6 can be 
found by exhaustion in a negligible amount of time. 

Stage 2. Since every element in T is of degree at most m, 

w < pm < e((n log(n)/ log(p)) l/2+ 1) log(p) - e(n log(n) log(p))"/2+log(p) 

< e (log(pn) log log(pn)) /2 +log(P) E Lpn [ 1 /2,5 1 ] 
(observe that log log(pn) > log(n)). Since irreducibility checking in Z/pZ[x] 
can be done in time polynomial in n and log(p) [5], there exists an L1 e 
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Lp[1/2, 1] such that all irreducible polynomials of degree less than or equal 
to m can be found by exhaustion within time L1 . 

Stage 3. By choosing a random 0 < r < pn - 1, ar will be a random poly- 
nomial of degree less than n. Thus, ar/3S will also be a random polynomial of 
degree less than n. The chances of such a random polynomial having factors 
only in T is Pp(n, m) (see ?2). Therefore, the expected number of execu- 
tions of Stage 3 is (w + 1)/Pp(n, m) < (w + 1)pmnn/m E Lpn[1/2, 3], since 
w + 1 , pm E Lp [ 1 /2, 1 ] and nn/m < elog(n)n/(n log(n)/ log(p))1/2 < e(n log(n) log(p))1/2 E 

Lpn[1/2, 1]. Since factorization in Z/pZ[x] can be done in random polyno- 
mial time [5], there exists an L2 E Lpn[1/2, 3] such that the expected number 
of steps required for a pass through Stage 3 is at most L2 . 

Stage 4: As indicated in ?2, there must exist a1 , a> a,+l E Z<pn- such 

that GCD(aI,a2,...,a,+,) = 1 and E'i=+1aivi =(0,0,...,0) mod(pn - 1). 
Further, as follows from ?2, there exists an algorithm which will calculate 
a,, a2, ... , aw+l in O(w3 log3(pn)) steps. Hence, there exists an L3 E 

Lpn[1/2, 3] such that the number of steps required for a single pass through 
Stage 4 is at most L3 . 

Next, it will be argued that the expected number of passes through Algorithm 
II is negligible. Stages will be repeated only if (1, pn - 1) :A 1 in Stage 7. 
However, (1, pn - 1) = 1 with probability ?i(pn - 1)/(pn - 1) > 1/c log(pn), 
where c e 91>0 is independent of p and n [3, Lemma 4]. Briefly, as in the 
analysis of Algorithm I, this can be argued as follows: Since from Stage 3(b), 
GCD(al, a2, ... , aw+i) = 1, it follows that for all primes t dividing pn - 1 
there exists an i e Z<W+l such that ai is relatively prime to t. Consider 
Yi = ari S1, and observe that for all s e Z<p n1 there exists a unique r e 

>0 
Z <Pn_j such that Yi =ars . Hence, si is "random" mod t, and consequently 

>0 
I = Eiwi1 siai is also "random" mod t. Hence, the expected number of passes 
through each stage of the algorithm is at most c log(pn). 

Thus, there exists an L4 E Lpn [1/2, 3] such that the expected number of steps 
required by Algorithm II on inputs p, f, a, ,6 such that p E Z>o is prime, 
f E Z/pZ[x] is monic, irreducible of degree n > p, and a, ,6 e Z/pZ[x] of 
degree less than n with [a] E (Z/pZ[x])/(f) a generator of the multiplicative 
group and ,6 $ 0 mod f is at most L4 . 

Observe that alflk = lWAjl1 ya, is the product of s = ]jw=l y4a times a 
(pn - 1)th power. Hence, algk -s mod f. Next observe that since [a] 
generates the multiplicative group of (Z/pZ[x])/(f), a y e Z<P-1 such that 
,y((p -1)/(p-1)) =_ s mod f must exist. Finally, it is clear from Stage 7 that the 
output of the algorithm is x such that ax- , mod f . 
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Discussion. Little effort was made to "optimize" the algorithm presented here. 
It is possible to improve the irunning time in several ways. Sparse matrix meth- 
ods can be used to find some dependencies [28]. Smoothness of norms can be 
tested using the "elliptic curve methods" [18]. The integer factoring done in 
various parts can probably be avoided, if necessary, or " L[ 1/3] " methods can 
be used (e.g., [3, 20]). Also, heuristically, the expected size of q in Algorithm I 
can be argued to be less than en(log(np))c for some c, c e 9,0o. This will lead 
to norms of size p n(an(log(np))c)n e Lpn[1, 2]. Using B e Lpn[1/2, 1] and 
the ideas above, we believe that a running time in Lpn [1/21 2] is achievable for 
Algorithm I. 

Several alternatives exist for our handling of the case n > p. Lovorn's algo- 
rithm [21], which has a irunning time in Lpn [ 1 /2, v52], covers this case. Alterna- 
tively, Lovorn's improved bound on Np(n, m) <pne-(n/m)(log(n/m)+loglog(n/m)+O(1)) 

together with sparse matrix techniques could be used to modify Algorithm II 
and also yield an Lpn[1/2, V] result. It would also be of interest to adapt 
Algorithm I to this setting. 

Hence, overall it appears discrete logarithms over GF(pn) can be computed 
in Lpn [ 1/2, 2] expected time. 

There appear to be several natural open problems. 
* Do there exist a c E Z>0 and an algorithm for discrete logarithms over 

GF(pn) with provable expected running time in L,[1/2, c]? 
* Does there exist an algorithm for discrete logarithms over GF(pn) with 

heuristic expected running time in L,[1/2, 1]? 
* Does there exist an algorithm for discrete logarithms over GF(pn) with 

provable expected running time in LX [1/2, 1]? 
* Do there exist a c E Z>0 and an algorithm for discrete logarithms over 

GF(pn) with heuristic expected irunning time in L,[ 1/3, c]? 
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